
Hazy Mind 3D Engine – XNA Series 

A tutorial series written in C# using the Microsoft XNA Framework 

Michael Schuld – mike@thehazymind.com – http://www.thehazymind.com 

Tutorial 2 - Setting up an Object Framework 
 
Tutorial content is intellectual property of Hazy Mind Interactive and is not to be reproduced in any form without express written consent 

Setting up an Object Framework 

Creating a Component Based Object System  
Since the XNA Framework uses a game architecture based on components, I think it would be a good 

idea to make our object system using components as well. An article on this approach is presented in 

Game Programming Gems 6, and will be implemented here, updated based on working within C# and 

the XNA framework. 

The Basic Object 
As is used in almost all game engines and scene graph implementations, our basic object class is going to 

consist of a position and a rotation. The difference between the normal method and the one we will 

implement here is that our objects will inherit from a number of interfaces and abstract classes that will 

extend their functionality in many ways. These will be simple interfaces that we will add to our object 

types depending on what we would like them to be able to do, such as be rendered or collide. To create 

our objects we will first need a base Component interface and a Renderable interface: 

using Microsoft.Xna.Framework.Graphics; 

 

namespace HMEngine.HMComponents { 

 public interface IHMComponent { } 

 

 public interface IHMRenderable : IHMComponent { 

  void Render(GraphicsDevice myDevice); 

 } 

} 

We will add more to the HMComponents namespace later on, but for now we will just leave it as a 

placeholder and add the complicated stuff when we need it. With our basic groundwork in place, we can 

put together our Object class: 

using HMEngine.HMComponents; 

using Microsoft.Xna.Framework; 

using Microsoft.Xna.Framework.Graphics; 

 

namespace HMEngine.HMObjects { 

 public abstract class HMObject : IHMRenderable { 

  public Vector3 Position { get; set; } 

  public Vector3 Scaling { get; set; } 

  public Quaternion Rotation { get; set; } 

 

  public abstract void Render(GraphicsDevice myDevice); 

 } 

} 

You can see that we put the class together as an abstract class that just implements the public 

properties from IHMRenderable as auto-properties. This will keep us from having to repeat them in all 

of our objects later on. 



P a g e  | 2 

 

Tutorial 2 - Setting up an Object Framework 

Extending Our Component Interfaces 
With the basic object setup in place, we need the components the object class is made up of to actually 

be used in some way by the engine, so we are going to make a component manager. To start out the 

HMComponentManager will just look like this: 

using System.Collections.Generic; 

using Microsoft.Xna.Framework; 

 

namespace HMEngine.HMComponents { 

 internal sealed class HMComponentManager : DrawableGameComponent { 

  private static readonly Dictionary<string, IHMComponent> masterList = 

   new Dictionary<string, IHMComponent>(); 

  private static readonly Dictionary<string, IHMRenderable> renderable = 

   new Dictionary<string, IHMRenderable>(); 

 

  internal HMComponentManager(Game game) : base(game) {} 

 

  public static void AddComponent(string name, IHMComponent component) { 

   masterList.Add(name, component); 

 

   if(component is IHMRenderable) { 

    renderable.Add(name, (IHMRenderable)component); 

   } 

  } 

 

  public override void Draw(GameTime gameTime) { 

   foreach (IHMRenderable render in renderable.Values) { 

    render.Render(GraphicsDevice); 

   } 

  } 

 } 

} 

The manager starts out with dictionaries of components and of renderable items indexed by a string 

name that we use in the Draw call to loop through and renderable items and pass the GraphicsDevice 

they need to perform their rendering. This method of storing lists of object types and looping through 

them will be used for all of our component types as we add them. 

The Object Manager 
To facilitate easy object management later on, we are going to make an object manager that will be a 

simple wrapper class for the component manager we just created. This is not technically needed to add 

objects to the engine, but will help with readability and understanding in our demo class. 

using HMEngine.HMComponents; 

using Microsoft.Xna.Framework; 

 

namespace HMEngine.HMObjects { 

 public sealed class HMObjectManager : GameComponent { 

  internal HMObjectManager(Game game) : base(game) { } 

 

  public static void AddObject(string name, HMObject obj) { HMComponentManager.AddComponent(name, obj); } 

 } 

} 

Adding the two new managers to our engine is just as easy as adding the graphics manager was. We are 

simply going to add the game component to the Game.Components list in the constructor to HMGame. 



P a g e  | 3 

 

Tutorial 2 - Setting up an Object Framework 

The order is important here as we will later on want to make sure that the component manager 

operates after everything else, so make sure to always put it at the end of the list of GameComponents: 

// In HMGame 

using HMEngine.HMComponents; 

using HMEngine.HMObjects; 

 

public HMGame() { 

 myGraphics = new GraphicsDeviceManager(this) { 

  PreferredBackBufferWidth = width, 

  PreferredBackBufferHeight = height 

 }; 

 

 Components.Add(new HMObjectManager(this)); 

 Components.Add(new HMComponentManager(this)); 

 

 // Window sizing code 

} 

Making Sure it all Works 
To test that the whole system is working. We will add a simple test object to our codebase for now that 

clears the device with a new color inside its render function. This way we will be able to tell the whole 

system is being passed through correctly. Here is the sample object and how we add it to the scene in 

the demo: 

using Microsoft.Xna.Framework; 

using Microsoft.Xna.Framework.Graphics; 

 

namespace HMEngine.HMObjects { 

 public class HMTestObject : HMObject { 

  public override void Render(GraphicsDevice myDevice) { 

   myDevice.Clear(Color.Orange); 

  } 

 } 

} 

 

// And the HMDemo class... 

using HMEngine; 

using HMEngine.HMObjects; 

 

namespace HMDemo { 

 internal static class HMDemo { 

  private static readonly HMGame game = new HMGame(800, 600); 

  private static readonly HMTestObject test = new HMTestObject(); 

 

  public static void Main() { 

   HMObjectManager.AddObject("test", test); 

   game.Run(); 

  } 

 } 

} 

As long as you got everything put together basically how I have done it here, you should be able to run 

the project now and see an orange surface being rendered instead of our default blue background. We 

will get to adding some objects that can actually be used to put a game together in the next tutorial. 


